
protowhat Documentation
Release 2.1.3

DataCamp

Dec 29, 2022

REFERENCE

1 Ex() 3

2 AST checks 5

3 Logic 9

4 Simple checks 11

5 File checks 13

6 Bash history checks 15

Python Module Index 19

Index 21

i

ii

protowhat Documentation, Release 2.1.3

protowhat is a utility package required by

• sqlwhat to write SCTs for SQL exercises, and

• protowhat to write SCTs for Shell exercises.

protowhat contains functionality that is shared between these packages, including:

• SCT function chaining and syntactical sugar,

• State management,

• AST element selection, dispatching and message generation,

• Basic SCT functions such as success_msg() and has_chosen().

All relevent documentation to write SCTs for SQL and Shell exercises, including functions that reside in protowhat,
can be found in the sqlwhat and protowhat documentation.

REFERENCE 1

https://sqlwhat.readthedocs.io
https://shellwhat.readthedocs.io
https://sqlwhat.readthedocs.io
https://shellwhat.readthedocs.io

protowhat Documentation, Release 2.1.3

2 REFERENCE

CHAPTER

ONE

EX()

3

protowhat Documentation, Release 2.1.3

4 Chapter 1. Ex()

CHAPTER

TWO

AST CHECKS

check_edge(state, name, index=0, missing_msg=None)
Select an attribute from an abstract syntax tree (AST) node, using the attribute name.

Parameters

• state – State instance describing student and solution code. Can be omitted if used with
Ex().

• name – the name of the attribute to select from current AST node.

• index – entry to get from a list field. If too few entires, will fail with missing_msg.

• missing_msg – feedback message if attribute is not in student AST.

Example If both the student and solution code are..

SELECT a FROM b; SELECT x FROM y;

then we can get the from_clause using

approach 1: with manually created State instance -----
state = State(*args, **kwargs)
select = check_node(state, 'SelectStmt', 0)
clause = check_edge(select, 'from_clause')

approach 2: with Ex and chaining ---------------------
select = Ex().check_node('SelectStmt', 0) # get first select␣
→˓statement
clause = select.check_edge('from_clause', None) # get from_clause␣
→˓(a list)
clause2 = select.check_edge('from_clause', 0) # get first entry␣
→˓in from_clause

check_node(state, name, index=0, missing_msg=None, priority=None)
Select a node from abstract syntax tree (AST), using its name and index position.

Parameters

• state – State instance describing student and solution code. Can be omitted if used with
Ex().

• name – the name of the abstract syntax tree node to find.

• index – the position of that node (see below for details).

• missing_msg – feedback message if node is not in student AST.

5

protowhat Documentation, Release 2.1.3

• priority – the priority level of the node being searched for. This determines whether to
descend into other AST nodes during the search. Higher priority nodes descend into lower
priority. Currently, the only important part of priority is that setting a very high priority (e.g.
99) will search every node.

Example If both the student and solution code are..

SELECT a FROM b; SELECT x FROM y;

then we can focus on the first select with:

approach 1: with manually created State instance
state = State(*args, **kwargs)
new_state = check_node(state, 'SelectStmt', 0)

approach 2: with Ex and chaining
new_state = Ex().check_node('SelectStmt', 0)

has_code(state, text, incorrect_msg='Check the {ast_path}. The checker expected to find {text}.', fixed=False)
Test whether the student code contains text.

Parameters

• state – State instance describing student and solution code. Can be omitted if used with
Ex().

• text – text that student code must contain. Can be a regex pattern or a simple string.

• incorrect_msg – feedback message if text is not in student code.

• fixed – whether to match text exactly, rather than using regular expressions.

Note: Functions like check_node focus on certain parts of code. Using these functions followed by has_code
will only look in the code being focused on.

Example If the student code is..

SELECT a FROM b WHERE id < 100

Then the first test below would (unfortunately) pass, but the second would fail..:

contained in student code
Ex().has_code(text="id < 10")

the $ means that you are matching the end of a line
Ex().has_code(text="id < 10$")

By setting fixed = True, you can search for fixed strings:

without fixed = True, '*' matches any character
Ex().has_code(text="SELECT * FROM b") # passes
Ex().has_code(text="SELECT * FROM b") # fails
Ex().has_code(text="SELECT * FROM b", fixed=True) # fails

You can check only the code corresponding to the WHERE clause, using

6 Chapter 2. AST checks

protowhat Documentation, Release 2.1.3

where = Ex().check_node('SelectStmt', 0).check_edge('where_clause')
where.has_code(text = "id < 10)

has_equal_ast(state, incorrect_msg=None, sql=None, start='expression', exact=None,
should_append_msg=False)

Test whether the student and solution code have identical AST representations

Parameters

• state – State instance describing student and solution code. Can be omitted if used with
Ex().

• incorrect_msg – feedback message if student and solution ASTs don’t match

• sql – optional code to use instead of the solution ast that is zoomed in on.

• start – if sql arg is used, the parser rule to parse the sql code. One of ‘expression’ (the
default), ‘subquery’, or ‘sql_script’.

• exact – whether to require an exact match (True), or only that the student AST contains the
solution AST. If not specified, this defaults to True if sql is not specified, and to False if
sql is specified. You can always specify it manually.

• should_append_msg – prepend the auto generated incorrect_msg with the previous ap-
pend_messages.

Example Example 1 - Suppose the solution code is

SELECT * FROM cities

and you want to verify whether the FROM part is correct:

Ex().check_node('SelectStmt').from_clause().has_equal_ast()

Example 2 - Suppose the solution code is

SELECT * FROM b WHERE id > 1 AND name = 'filip'

Then the following SCT makes sure id > 1 was used somewhere in the WHERE clause.:

Ex().check_node('SelectStmt') \/
.check_edge('where_clause') \/
.has_equal_ast(sql = 'id > 1')

7

protowhat Documentation, Release 2.1.3

8 Chapter 2. AST checks

CHAPTER

THREE

LOGIC

check_correct(state, check, diagnose)
Allows feedback from a diagnostic SCT, only if a check SCT fails.

Parameters

• state – State instance describing student and solution code. Can be omitted if used with
Ex().

• check – An sct chain that must succeed.

• diagnose – An sct chain to run if the check fails.

Example The SCT below tests whether students query result is correct, before running diagnostic
SCTs..

Ex().check_correct(
check_result(),
check_node('SelectStmt')

)

check_not(state, *tests, msg)
Run multiple subtests that should fail. If all subtests fail, returns original state (for chaining)

• This function is currently only tested in working with has_code() in the subtests.

• This function can be thought as a NOT(x OR y OR ...) statement, since all tests it runs must fail

• This function can be considered a direct counterpart of multi.

Parameters

• state – State instance describing student and solution code, can be omitted if used with
Ex()

• *tests – one or more sub-SCTs to run

• msg – feedback message that is shown in case not all tests specified in *tests fail.

Example Thh SCT below runs two has_code cases..

Ex().check_not(
has_code('INNER'),
has_code('OUTER'),
incorrect_msg="Don't use `INNER` or `OUTER`!"

)

If students use INNER (JOIN) or OUTER (JOIN) in their code, this test will fail.

9

protowhat Documentation, Release 2.1.3

check_or(state, *tests)
Test whether at least one SCT passes.

Parameters

• state – State instance describing student and solution code, can be omitted if used with
Ex()

• tests – one or more sub-SCTs to run

Example The SCT below tests that the student typed either ‘SELECT’ or ‘WHERE’ (or both)..

Ex().check_or(
has_code('SELECT'),
has_code('WHERE')

)

The SCT below checks that a SELECT statement has at least a WHERE c or LIMIT clause..

Ex().check_node('SelectStmt', 0).check_or(
check_edge('where_clause'),
check_edge('limit_clause')

)

disable_highlighting(state)
Disable highlighting in the remainder of the SCT chain.

Include this function if you want to avoid that pythonwhat marks which part of the student submission is incorrect.

fail(state, msg='fail')
Always fails the SCT, with an optional msg.

This function takes a single argument, msg, that is the feedback given to the student. Note that this would be
a terrible idea for grading submissions, but may be useful while writing SCTs. For example, failing a test will
highlight the code as if the previous test/check had failed.

multi(state, *tests)
Run multiple subtests. Return original state (for chaining).

This function could be thought as an AND statement, since all tests it runs must pass

Parameters

• state – State instance describing student and solution code, can be omitted if used with
Ex()

• tests – one or more sub-SCTs to run.

Example The SCT below checks two has_code cases..

Ex().multi(has_code('SELECT'), has_code('WHERE'))

The SCT below uses multi to ‘branch out’ to check that the SELECT statement has both a
WHERE and LIMIT clause..

Ex().check_node('SelectStmt', 0).multi(
check_edge('where_clause'),
check_edge('limit_clause')

)

10 Chapter 3. Logic

CHAPTER

FOUR

SIMPLE CHECKS

allow_errors(state)
Allow running the student code to generate errors.

This has to be used only once for every time code is executed or a different xwhat library is used. In most exercises
that means it should be used just once.

Example The following SCT allows the student code to generate errors:

Ex().allow_errors()

has_chosen(state, correct, msgs)
Verify exercises of the type MultipleChoiceExercise

Parameters

• state – State instance describing student and solution code. Can be omitted if used with
Ex().

• correct – index of correct option, where 1 is the first option.

• msgs – list of feedback messages corresponding to each option.

Example The following SCT is for a multiple choice exercise with 2 options, the first of which is
correct.:

Ex().has_chosen(1, ['Correct!', 'Incorrect. Try again!'])

success_msg(state, msg)
Changes the success message to display if submission passes.

Parameters

• state – State instance describing student and solution code. Can be omitted if used with
Ex().

• msg – feedback message if student and solution ASTs don’t match

Example The following SCT changes the success message:

Ex().success_msg("You did it!")

11

protowhat Documentation, Release 2.1.3

12 Chapter 4. Simple checks

CHAPTER

FIVE

FILE CHECKS

check_file(state: protowhat.State.State, path, missing_msg='Did you create the file `{}`?', is_dir_msg='Want to
check the file `{}`, but found a directory.', parse=True, solution_code=None)

Test whether file exists, and make its contents the student code.

Parameters

• state – State instance describing student and solution code. Can be omitted if used with
Ex().

• path – expected location of the file

• missing_msg – feedback message if no file is found in the expected location

• is_dir_msg – feedback message if the path is a directory instead of a file

• parse – If True (the default) the content of the file is interpreted as code in the main exercise
technology. This enables more checks on the content of the file.

• solution_code – this argument can be used to pass the expected code for the file so it can
be used by subsequent checks.

Note: This SCT fails if the file is a directory.

Example To check if a user created the file my_output.txt in the subdirectory resources of the
directory where the exercise is run, use this SCT:

Ex().check_file("resources/my_output.txt", parse=False)

has_dir(state: protowhat.State.State, path, msg='Did you create a directory `{}`?')
Test whether a directory exists.

Parameters

• state – State instance describing student and solution code. Can be omitted if used with
Ex().

• path – expected location of the directory

• msg – feedback message if no directory is found in the expected location

Example To check if a user created the subdirectory resources in the directory where the exercise
is run, use this SCT:

Ex().has_dir("resources")

13

protowhat Documentation, Release 2.1.3

14 Chapter 5. File checks

CHAPTER

SIX

BASH HISTORY CHECKS

get_bash_history(full_history=False, bash_history_path=None)
Get the commands in the bash history

Parameters

• full_history (bool) – if true, returns all commands in the bash history, else only return
the commands executed after the last bash history info update

• bash_history_path (str | Path) – path to the bash history file

Returns a list of commands (empty if the file is not found)

Import from from protowhat.checks import get_bash_history.

has_command(state, pattern, msg, fixed=False, commands=None)
Test whether the bash history has a command matching the pattern

Parameters

• state – State instance describing student and solution code. Can be omitted if used with
Ex().

• pattern – text that command must contain (can be a regex pattern or a simple string)

• msg – feedback message if no matching command is found

• fixed – whether to match text exactly, rather than using regular expressions

• commands – the bash history commands to check against. By default this will be all com-
mands since the last bash history info update. Otherwise pass a list of commands to search
through, created by calling the helper function get_bash_history().

Note: The helper function update_bash_history_info(bash_history_path=None) needs to be called in
the pre-exercise code in exercise types that don’t have built-in support for bash history features.

Note: If the bash history info is updated every time code is submitted (by using
update_bash_history_info() in the pre-exercise code), it’s advised to only use this function as the
second part of a check_correct() to help students debug the command they haven’t correctly run yet. Look
at the examples to see what could go wrong.

If bash history info is only updated at the start of an exercise, this can be used everywhere as the (cumulative)
commands from all submissions are known.

Example The goal of an exercise is to use man.

15

protowhat Documentation, Release 2.1.3

If the exercise doesn’t have built-in support for bash history SCTs, update the bash history info
in the pre-exercise code:

update_bash_history_info()

In the SCT, check whether a command with man was used:

Ex().has_command("$man\s", "Your command should start with ``man ...``.
→˓")

Example The goal of an exercise is to use touch to create two files.

In the pre-exercise code, put:

update_bash_history_info()

This SCT can cause problems:

Ex().has_command("touch.*file1", "Use `touch` to create `file1`")
Ex().has_command("touch.*file2", "Use `touch` to create `file2`")

If a student submits after running touch file0 && touch file1 in the console, they will get
feedback to create file2. If they submit again after running touch file2 in the console, they
will get feedback to create file1, since the SCT only has access to commands after the last bash
history info update (only the second command in this case). Only if they execute all required
commands in a single submission the SCT will pass.

A better SCT in this situation checks the outcome first and checks the command to help the
student achieve it:

Ex().check_correct(
check_file('file1', parse=False),
has_command("touch.*file1", "Use `touch` to create `file1`")

)
Ex().check_correct(

check_file('file2', parse=False),
has_command("touch.*file2", "Use `touch` to create `file2`")

)

prepare_validation(state: protowhat.State.State, commands: List[str], bash_history_path: Optional[str] =
None)→ protowhat.State.State

Let the exercise validation know what shell commands are required to complete the exercise

Import using from protowhat.checks import prepare_validation.

Parameters

• state – State instance describing student and solution code. Can be omitted if used with
Ex().

• commands – List of strings that a student is expected to execute

• bash_history_path (str | Path) – path to the bash history file

Example The goal of an exercise is to run a build and check the output.

At the start of the SCT, put:

16 Chapter 6. Bash history checks

protowhat Documentation, Release 2.1.3

Ex().prepare_validation(["make", "cd build", "ls"])

Further down you can now use has_command.

update_bash_history_info(bash_history_path=None)
Store the current number of commands in the bash history

get_bash_history can use this info later to get only newer commands.

Depending on the wanted behaviour this function should be called at the start of the exercise or every time the
exercise is submitted.

Import using from protowhat.checks import update_bash_history_info.

17

protowhat Documentation, Release 2.1.3

18 Chapter 6. Bash history checks

PYTHON MODULE INDEX

p
protowhat.checks.check_bash_history, 15
protowhat.checks.check_files, 13
protowhat.checks.check_funcs, 5
protowhat.checks.check_logic, 9
protowhat.checks.check_simple, 11

19

protowhat Documentation, Release 2.1.3

20 Python Module Index

INDEX

A
allow_errors() (in module pro-

towhat.checks.check_simple), 11

C
check_correct() (in module pro-

towhat.checks.check_logic), 9
check_edge() (in module pro-

towhat.checks.check_funcs), 5
check_file() (in module protowhat.checks.check_files),

13
check_node() (in module pro-

towhat.checks.check_funcs), 5
check_not() (in module protowhat.checks.check_logic),

9
check_or() (in module protowhat.checks.check_logic), 9

D
disable_highlighting() (in module pro-

towhat.checks.check_logic), 10

F
fail() (in module protowhat.checks.check_logic), 10

G
get_bash_history() (in module pro-

towhat.checks.check_bash_history), 15

H
has_chosen() (in module pro-

towhat.checks.check_simple), 11
has_code() (in module protowhat.checks.check_funcs),

6
has_command() (in module pro-

towhat.checks.check_bash_history), 15
has_dir() (in module protowhat.checks.check_files), 13
has_equal_ast() (in module pro-

towhat.checks.check_funcs), 7

M
module

protowhat.checks.check_bash_history, 15
protowhat.checks.check_files, 13
protowhat.checks.check_funcs, 5
protowhat.checks.check_logic, 9
protowhat.checks.check_simple, 11

multi() (in module protowhat.checks.check_logic), 10

P
prepare_validation() (in module pro-

towhat.checks.check_bash_history), 16
protowhat.checks.check_bash_history

module, 15
protowhat.checks.check_files

module, 13
protowhat.checks.check_funcs

module, 5
protowhat.checks.check_logic

module, 9
protowhat.checks.check_simple

module, 11

S
success_msg() (in module pro-

towhat.checks.check_simple), 11

U
update_bash_history_info() (in module pro-

towhat.checks.check_bash_history), 17

21

	Ex()
	AST checks
	Logic
	Simple checks
	File checks
	Bash history checks
	Python Module Index
	Index

