

protowhat

protowhat is a utility package required by

	sqlwhat [https://sqlwhat.readthedocs.io] to write SCTs for SQL exercises, and

	protowhat [https://shellwhat.readthedocs.io] to write SCTs for Shell exercises.

protowhat contains functionality that is shared between these packages, including:

	SCT function chaining and syntactical sugar,

	State management,

	AST element selection, dispatching and message generation,

	Basic SCT functions such as success_msg() and has_chosen().

All relevent documentation to write SCTs for SQL and Shell exercises,
including functions that reside in protowhat, can be found in the sqlwhat [https://sqlwhat.readthedocs.io] and protowhat [https://shellwhat.readthedocs.io] documentation.

Reference

	Ex()

	AST checks

	Logic

	Simple checks

	File checks

	Bash history checks

Ex()

AST checks

	
check_edge(state, name, index=0, missing_msg=None)

	Select an attribute from an abstract syntax tree (AST) node, using the attribute name.

	Parameters

	
	state – State instance describing student and solution code. Can be omitted if used with Ex().

	name – the name of the attribute to select from current AST node.

	index – entry to get from a list field. If too few entires, will fail with missing_msg.

	missing_msg – feedback message if attribute is not in student AST.

	Example

	If both the student and solution code are..

SELECT a FROM b; SELECT x FROM y;

then we can get the from_clause using

approach 1: with manually created State instance -----
state = State(*args, **kwargs)
select = check_node(state, 'SelectStmt', 0)
clause = check_edge(select, 'from_clause')

approach 2: with Ex and chaining ---------------------
select = Ex().check_node('SelectStmt', 0) # get first select statement
clause = select.check_edge('from_clause', None) # get from_clause (a list)
clause2 = select.check_edge('from_clause', 0) # get first entry in from_clause

	
check_node(state, name, index=0, missing_msg=None, priority=None)

	Select a node from abstract syntax tree (AST), using its name and index position.

	Parameters

	
	state – State instance describing student and solution code. Can be omitted if used with Ex().

	name – the name of the abstract syntax tree node to find.

	index – the position of that node (see below for details).

	missing_msg – feedback message if node is not in student AST.

	priority – the priority level of the node being searched for. This determines whether to
descend into other AST nodes during the search. Higher priority nodes descend
into lower priority. Currently, the only important part of priority is that
setting a very high priority (e.g. 99) will search every node.

	Example

	If both the student and solution code are..

SELECT a FROM b; SELECT x FROM y;

then we can focus on the first select with:

approach 1: with manually created State instance
state = State(*args, **kwargs)
new_state = check_node(state, 'SelectStmt', 0)

approach 2: with Ex and chaining
new_state = Ex().check_node('SelectStmt', 0)

	
has_code(state, text, incorrect_msg='Check the {ast_path}. The checker expected to find {text}.', fixed=False)

	Test whether the student code contains text.

	Parameters

	
	state – State instance describing student and solution code. Can be omitted if used with Ex().

	text – text that student code must contain. Can be a regex pattern or a simple string.

	incorrect_msg – feedback message if text is not in student code.

	fixed – whether to match text exactly, rather than using regular expressions.

Note

Functions like check_node focus on certain parts of code.
Using these functions followed by has_code will only look
in the code being focused on.

	Example

	If the student code is..

SELECT a FROM b WHERE id < 100

Then the first test below would (unfortunately) pass, but the second would fail..:

contained in student code
Ex().has_code(text="id < 10")

the $ means that you are matching the end of a line
Ex().has_code(text="id < 10$")

By setting fixed = True, you can search for fixed strings:

without fixed = True, '*' matches any character
Ex().has_code(text="SELECT * FROM b") # passes
Ex().has_code(text="SELECT * FROM b") # fails
Ex().has_code(text="SELECT * FROM b", fixed=True) # fails

You can check only the code corresponding to the WHERE clause, using

where = Ex().check_node('SelectStmt', 0).check_edge('where_clause')
where.has_code(text = "id < 10)

	
has_equal_ast(state, incorrect_msg=None, sql=None, start='expression', exact=None, should_append_msg=False)

	Test whether the student and solution code have identical AST representations

	Parameters

	
	state – State instance describing student and solution code. Can be omitted if used with Ex().

	incorrect_msg – feedback message if student and solution ASTs don’t match

	sql – optional code to use instead of the solution ast that is zoomed in on.

	start – if sql arg is used, the parser rule to parse the sql code.
One of ‘expression’ (the default), ‘subquery’, or ‘sql_script’.

	exact – whether to require an exact match (True), or only that the
student AST contains the solution AST. If not specified, this
defaults to True if sql is not specified, and to False
if sql is specified. You can always specify it manually.

	should_append_msg – prepend the auto generated incorrect_msg with the previous append_messages.

	Example

	Example 1 - Suppose the solution code is

SELECT * FROM cities

and you want to verify whether the FROM part is correct:

Ex().check_node('SelectStmt').from_clause().has_equal_ast()

Example 2 - Suppose the solution code is

SELECT * FROM b WHERE id > 1 AND name = 'filip'

Then the following SCT makes sure id > 1 was used somewhere in the WHERE clause.:

Ex().check_node('SelectStmt') \/
 .check_edge('where_clause') \/
 .has_equal_ast(sql = 'id > 1')

Logic

	
check_correct(state, check, diagnose)

	Allows feedback from a diagnostic SCT, only if a check SCT fails.

	Parameters

	
	state – State instance describing student and solution code. Can be omitted if used with Ex().

	check – An sct chain that must succeed.

	diagnose – An sct chain to run if the check fails.

	Example

	The SCT below tests whether students query result is correct, before running diagnostic SCTs..

Ex().check_correct(
 check_result(),
 check_node('SelectStmt')
)

	
check_not(state, *tests, msg)

	Run multiple subtests that should fail. If all subtests fail, returns original state (for chaining)

	This function is currently only tested in working with has_code() in the subtests.

	This function can be thought as a NOT(x OR y OR ...) statement, since all tests it runs must fail

	This function can be considered a direct counterpart of multi.

	Parameters

	
	state – State instance describing student and solution code, can be omitted if used with Ex()

	*tests – one or more sub-SCTs to run

	msg – feedback message that is shown in case not all tests specified in *tests fail.

	Example

	Thh SCT below runs two has_code cases..

Ex().check_not(
 has_code('INNER'),
 has_code('OUTER'),
 incorrect_msg="Don't use `INNER` or `OUTER`!"
)

If students use INNER (JOIN) or OUTER (JOIN) in their code, this test will fail.

	
check_or(state, *tests)

	Test whether at least one SCT passes.

	Parameters

	
	state – State instance describing student and solution code, can be omitted if used with Ex()

	tests – one or more sub-SCTs to run

	Example

	The SCT below tests that the student typed either ‘SELECT’ or ‘WHERE’ (or both)..

Ex().check_or(
 has_code('SELECT'),
 has_code('WHERE')
)

The SCT below checks that a SELECT statement has at least a WHERE c or LIMIT clause..

Ex().check_node('SelectStmt', 0).check_or(
 check_edge('where_clause'),
 check_edge('limit_clause')
)

	
disable_highlighting(state)

	Disable highlighting in the remainder of the SCT chain.

Include this function if you want to avoid that pythonwhat marks which part of the student submission is incorrect.

	
fail(state, msg='fail')

	Always fails the SCT, with an optional msg.

This function takes a single argument, msg, that is the feedback given to the student.
Note that this would be a terrible idea for grading submissions, but may be useful while writing SCTs.
For example, failing a test will highlight the code as if the previous test/check had failed.

	
multi(state, *tests)

	Run multiple subtests. Return original state (for chaining).

This function could be thought as an AND statement, since all tests it runs must pass

	Parameters

	
	state – State instance describing student and solution code, can be omitted if used with Ex()

	tests – one or more sub-SCTs to run.

	Example

	The SCT below checks two has_code cases..

Ex().multi(has_code('SELECT'), has_code('WHERE'))

The SCT below uses multi to ‘branch out’ to check that
the SELECT statement has both a WHERE and LIMIT clause..

Ex().check_node('SelectStmt', 0).multi(
 check_edge('where_clause'),
 check_edge('limit_clause')
)

Simple checks

	
allow_errors(state)

	Allow running the student code to generate errors.

This has to be used only once for every time code is executed or a different xwhat library is used.
In most exercises that means it should be used just once.

	Example

	The following SCT allows the student code to generate errors:

Ex().allow_errors()

	
has_chosen(state, correct, msgs)

	Verify exercises of the type MultipleChoiceExercise

	Parameters

	
	state – State instance describing student and solution code. Can be omitted if used with Ex().

	correct – index of correct option, where 1 is the first option.

	msgs – list of feedback messages corresponding to each option.

	Example

	The following SCT is for a multiple choice exercise with 2 options, the first
of which is correct.:

Ex().has_chosen(1, ['Correct!', 'Incorrect. Try again!'])

	
success_msg(state, msg)

	Changes the success message to display if submission passes.

	Parameters

	
	state – State instance describing student and solution code. Can be omitted if used with Ex().

	msg – feedback message if student and solution ASTs don’t match

	Example

	The following SCT changes the success message:

Ex().success_msg("You did it!")

File checks

	
check_file(state: protowhat.State.State, path, missing_msg='Did you create the file `{}`?', is_dir_msg='Want to check the file `{}`, but found a directory.', parse=True, solution_code=None)

	Test whether file exists, and make its contents the student code.

	Parameters

	
	state – State instance describing student and solution code. Can be omitted if used with Ex().

	path – expected location of the file

	missing_msg – feedback message if no file is found in the expected location

	is_dir_msg – feedback message if the path is a directory instead of a file

	parse – If True (the default) the content of the file is interpreted as code in the main exercise technology.
This enables more checks on the content of the file.

	solution_code – this argument can be used to pass the expected code for the file
so it can be used by subsequent checks.

Note

This SCT fails if the file is a directory.

	Example

	To check if a user created the file my_output.txt in the subdirectory resources
of the directory where the exercise is run, use this SCT:

Ex().check_file("resources/my_output.txt", parse=False)

	
has_dir(state: protowhat.State.State, path, msg='Did you create a directory `{}`?')

	Test whether a directory exists.

	Parameters

	
	state – State instance describing student and solution code. Can be omitted if used with Ex().

	path – expected location of the directory

	msg – feedback message if no directory is found in the expected location

	Example

	To check if a user created the subdirectory resources
in the directory where the exercise is run, use this SCT:

Ex().has_dir("resources")

Bash history checks

	
get_bash_history(full_history=False, bash_history_path=None)

	Get the commands in the bash history

	Parameters

	
	full_history (bool) – if true, returns all commands in the bash history,
else only return the commands executed after the last bash history info update

	bash_history_path (str | Path) – path to the bash history file

	Returns

	a list of commands (empty if the file is not found)

Import from from protowhat.checks import get_bash_history.

	
has_command(state, pattern, msg, fixed=False, commands=None)

	Test whether the bash history has a command matching the pattern

	Parameters

	
	state – State instance describing student and solution code. Can be omitted if used with Ex().

	pattern – text that command must contain (can be a regex pattern or a simple string)

	msg – feedback message if no matching command is found

	fixed – whether to match text exactly, rather than using regular expressions

	commands – the bash history commands to check against.
By default this will be all commands since the last bash history info update.
Otherwise pass a list of commands to search through, created by calling the helper function
get_bash_history().

Note

The helper function update_bash_history_info(bash_history_path=None)
needs to be called in the pre-exercise code in exercise types that don’t have
built-in support for bash history features.

Note

If the bash history info is updated every time code is submitted
(by using update_bash_history_info() in the pre-exercise code),
it’s advised to only use this function as the second part of a check_correct()
to help students debug the command they haven’t correctly run yet.
Look at the examples to see what could go wrong.

If bash history info is only updated at the start of an exercise,
this can be used everywhere as the (cumulative) commands from all submissions are known.

	Example

	The goal of an exercise is to use man.

If the exercise doesn’t have built-in support for bash history SCTs,
update the bash history info in the pre-exercise code:

update_bash_history_info()

In the SCT, check whether a command with man was used:

Ex().has_command("$man\s", "Your command should start with ``man ...``.")

	Example

	The goal of an exercise is to use touch to create two files.

In the pre-exercise code, put:

update_bash_history_info()

This SCT can cause problems:

Ex().has_command("touch.*file1", "Use `touch` to create `file1`")
Ex().has_command("touch.*file2", "Use `touch` to create `file2`")

If a student submits after running touch file0 && touch file1 in the console,
they will get feedback to create file2.
If they submit again after running touch file2 in the console,
they will get feedback to create file1, since the SCT only has access
to commands after the last bash history info update (only the second command in this case).
Only if they execute all required commands in a single submission the SCT will pass.

A better SCT in this situation checks the outcome first
and checks the command to help the student achieve it:

Ex().check_correct(
 check_file('file1', parse=False),
 has_command("touch.*file1", "Use `touch` to create `file1`")
)
Ex().check_correct(
 check_file('file2', parse=False),
 has_command("touch.*file2", "Use `touch` to create `file2`")
)

	
prepare_validation(state: protowhat.State.State, commands: List[str], bash_history_path: Optional[str] = None) → protowhat.State.State

	Let the exercise validation know what shell commands are required to complete the exercise

Import using from protowhat.checks import prepare_validation.

	Parameters

	
	state – State instance describing student and solution code. Can be omitted if used with Ex().

	commands – List of strings that a student is expected to execute

	bash_history_path (str | Path) – path to the bash history file

	Example

	The goal of an exercise is to run a build and check the output.

At the start of the SCT, put:

Ex().prepare_validation(["make", "cd build", "ls"])

Further down you can now use has_command.

	
update_bash_history_info(bash_history_path=None)

	Store the current number of commands in the bash history

get_bash_history can use this info later to get only newer commands.

Depending on the wanted behaviour this function should be called
at the start of the exercise or every time the exercise is submitted.

Import using from protowhat.checks import update_bash_history_info.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 protowhat	

 	
 	
 protowhat.checks.check_bash_history	

 	
 	
 protowhat.checks.check_files	

 	
 	
 protowhat.checks.check_funcs	

 	
 	
 protowhat.checks.check_logic	

 	
 	
 protowhat.checks.check_simple	

Index

 A
 | C
 | D
 | F
 | G
 | H
 | M
 | P
 | S
 | U

A

 	
 	allow_errors() (in module protowhat.checks.check_simple)

C

 	
 	check_correct() (in module protowhat.checks.check_logic)

 	check_edge() (in module protowhat.checks.check_funcs)

 	check_file() (in module protowhat.checks.check_files)

 	
 	check_node() (in module protowhat.checks.check_funcs)

 	check_not() (in module protowhat.checks.check_logic)

 	check_or() (in module protowhat.checks.check_logic)

D

 	
 	disable_highlighting() (in module protowhat.checks.check_logic)

F

 	
 	fail() (in module protowhat.checks.check_logic)

G

 	
 	get_bash_history() (in module protowhat.checks.check_bash_history)

H

 	
 	has_chosen() (in module protowhat.checks.check_simple)

 	has_code() (in module protowhat.checks.check_funcs)

 	
 	has_command() (in module protowhat.checks.check_bash_history)

 	has_dir() (in module protowhat.checks.check_files)

 	has_equal_ast() (in module protowhat.checks.check_funcs)

M

 	
 	
 module

 	protowhat.checks.check_bash_history

 	protowhat.checks.check_files

 	protowhat.checks.check_funcs

 	protowhat.checks.check_logic

 	protowhat.checks.check_simple

 	
 	multi() (in module protowhat.checks.check_logic)

P

 	
 	prepare_validation() (in module protowhat.checks.check_bash_history)

 	
 protowhat.checks.check_bash_history

 	module

 	
 protowhat.checks.check_files

 	module

 	
 	
 protowhat.checks.check_funcs

 	module

 	
 protowhat.checks.check_logic

 	module

 	
 protowhat.checks.check_simple

 	module

S

 	
 	success_msg() (in module protowhat.checks.check_simple)

U

 	
 	update_bash_history_info() (in module protowhat.checks.check_bash_history)

 nav.xhtml

 Table of Contents

 		
 protowhat

 		
 Ex()

 		
 AST checks

 		
 Logic

 		
 Simple checks

 		
 File checks

 		
 Bash history checks

_static/minus.png

_static/plus.png

_static/file.png

